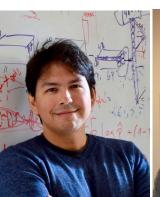


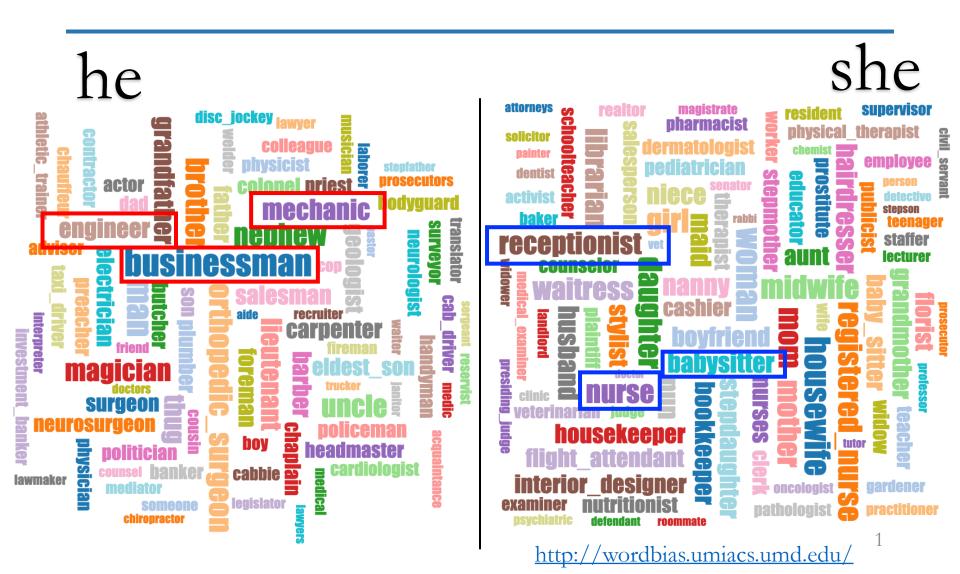
Gender Bias in Contextualized Word Embeddings

Jieyu Zhao¹, Tianlu Wang², Mark Yatskar³, Ryan Cotterell⁴, Vicente Ordonez², Kai-Wei Chang¹

¹UCLA, ²University of Virginia, ³Allen Institute for AI, ⁴University of Cambridge

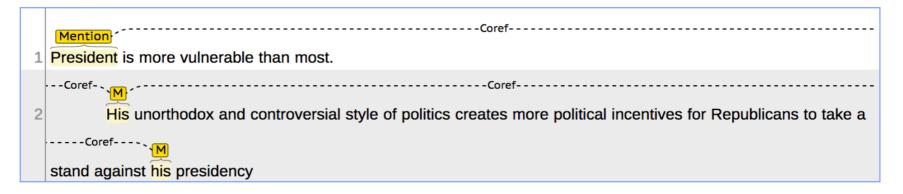


Bias in NLP: Word Embeddings



Bias in NLP: Downstream Task

- Coreference resolution is biased^{1,2}
 - Model fails for "she" when given same context

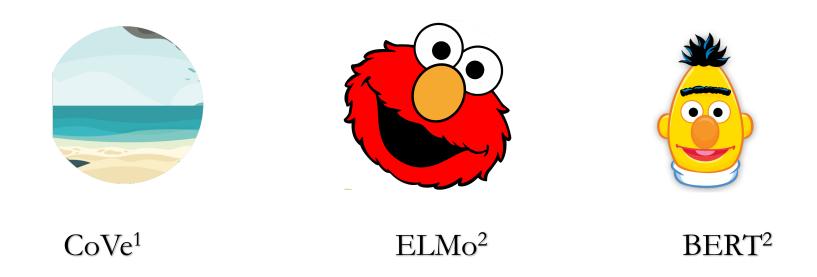


1	President is more vulnerable than most.
	Coref
	M,
2	Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand
ŀ	Coref- `M
	against <mark>her</mark> presidency

¹Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018

²Rudinger et al. Gender Bias in Coreference Resolution. NAACL 2018

Contextualized Word Embeddings



Great performance improvement!

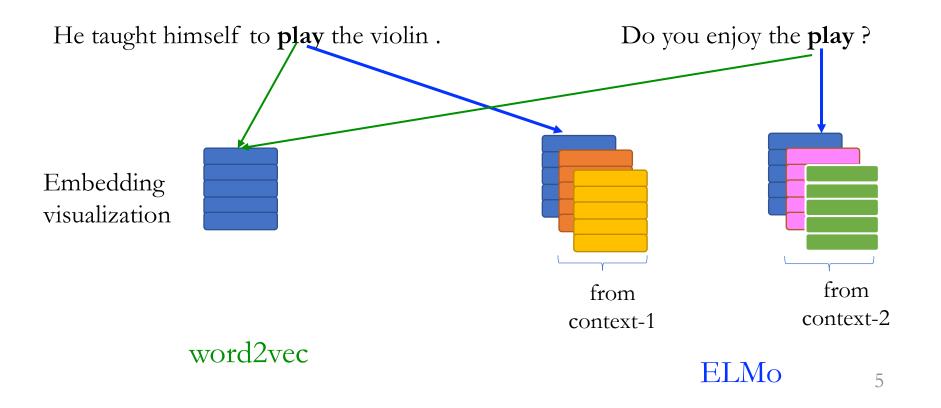
Bias?

Outline - 1

- ELMo is sensitive to gender
 - Training corpus is biased
 - ELMo treats genders unequally
 - Bias propagates to downstream tasks

Background: ELMo

- Make use of a pretrained language model
- Embed corresponding context into the representations



Bias in ELMo

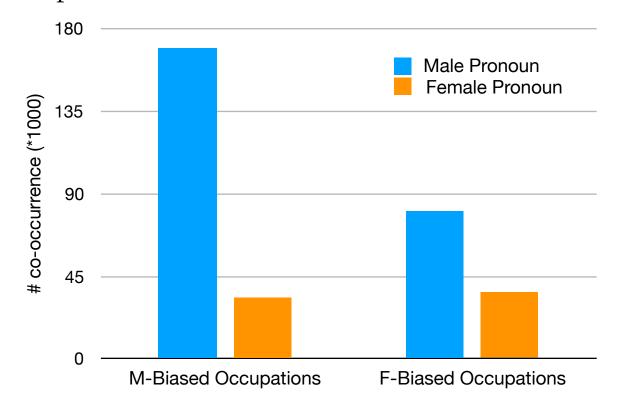
- Training Dataset Bias
 - Dataset is biased towards man

Gender	Male Pronouns	Female Pronouns
Occurrence (*1000)	5,300	1,600

• Male pronouns (he, him, his) occur 3 times more often than females' (she, her)

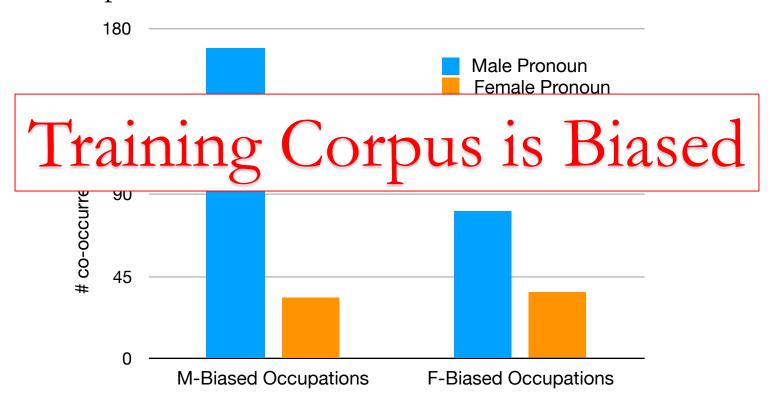
Bias in ELMo (continued)

• Male pronouns co-occur more frequently with occupation words¹



Bias in ELMo (continued)

• Male pronouns co-occur more frequently with occupation words¹

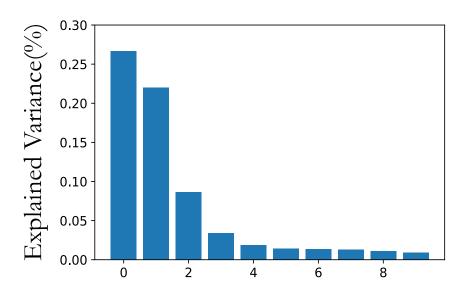


Gender Geometry in ELMo

• First two components explain more variance than others

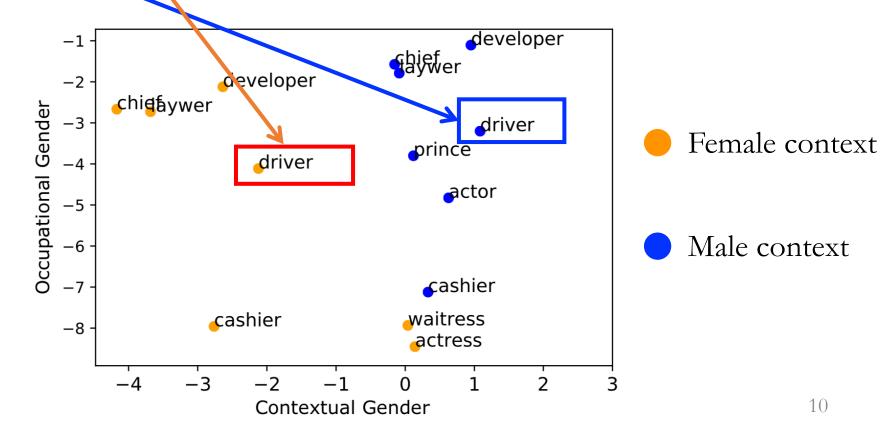
(Feminine) The driver stopped the car at the hospital because **she** was paid to do so (Masculine) The driver stopped the car at the hospital because **he** was paid to do so

gender direction: ELMo(driver) – ELMo(driver)



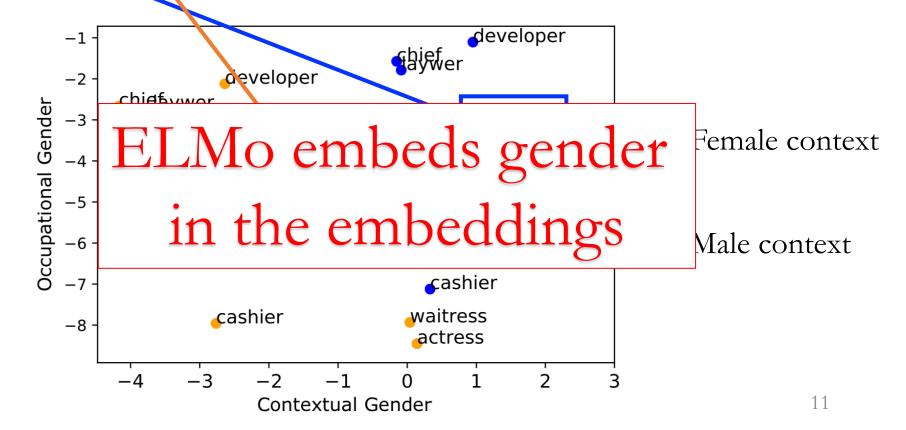
Gender Geometry in ELMo

- The driver stopped the car at the hospital because she was paid to do so
- The driver stopped the car at the hospital because he was paid to do so



Gender Geometry in ELMo

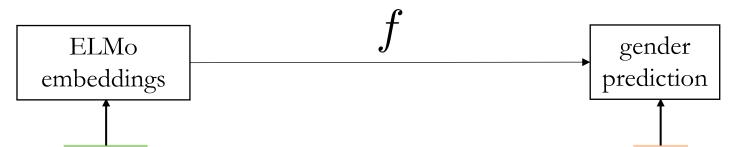
- The driver stopped the car at the hospital because she was paid to do so
- The driver stopped the car at the hospital because he was paid to do so



Unequal Treatment of Gender

• Classifier

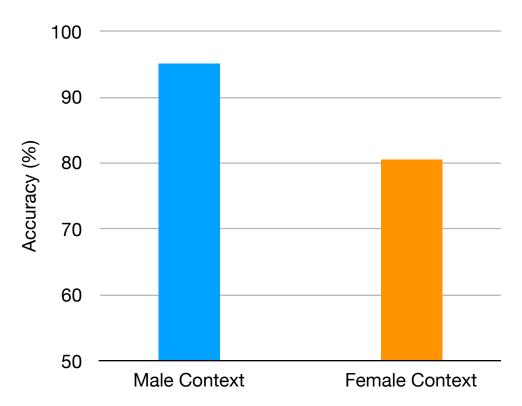
f: ELMo(occupation) o context gender



The driver stopped the car at the hospital because she was paid to do so

Unequal Treatment of Gender (continued)

- ELMo propagates gender information from the context
- Male information is 14% more accurately propagated than female

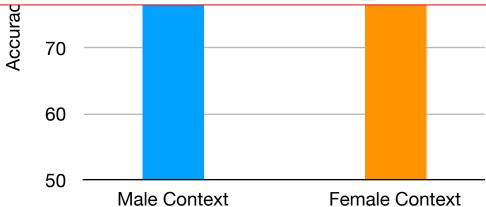


Unequal Treatment of Gender (continued)

- ELMo propagates gender information from the context
- Male information is 14% more accurately propagated than female

100

ELMo embeddings are biased



Bias in Downstream Task: Coreference Resolution in English

- WinoBias dataset¹
 - Pro-Stereotypical (Pro.) and Anti-Stereotypical (Anti.)

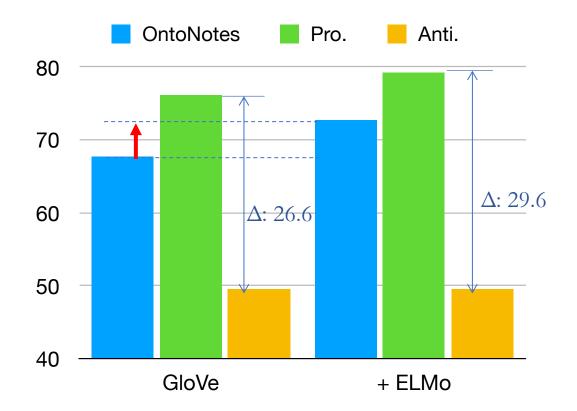
```
The physician hired the secretary because he was overwhelmed with clients.

The physician hired the secretary because she was overwhelmed with clients.
```

• Bias: performance difference between Pro. and Anti. dataset.

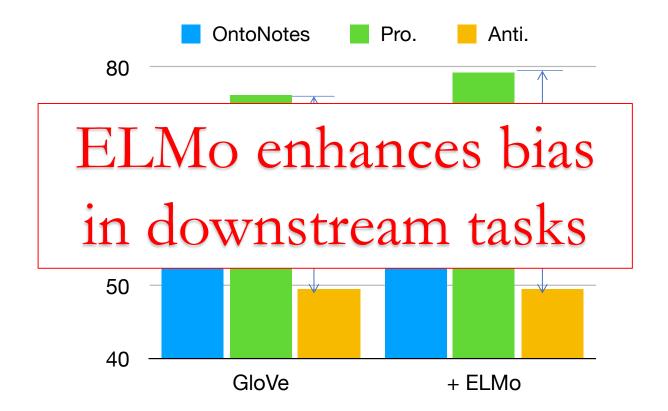
Bias in Coreference

- ELMo boosts the performance
- However, enlarge the bias (Δ)



Bias in Coreference

- ELMo boosts the performance
- However, enlarge the bias (Δ)



Outline - 2

- Mitigation Bias
 - Gender swapping
 - Data augmentation
 - Neutralizing ELMo

Mitigate Bias

• Gender Swapping¹

The doctor went to the store to pick up food.

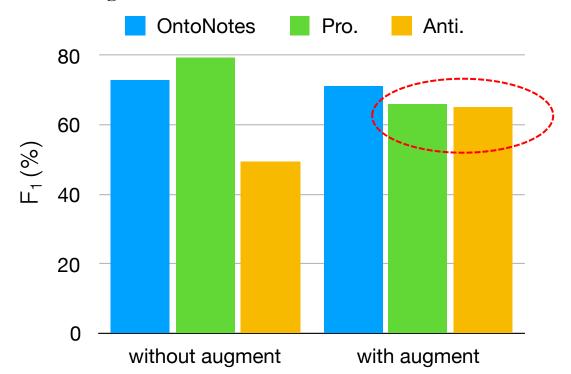
At the store, there was a sick cashier.

The doctor offered to helped the cashier because she could see something was wrong.

¹Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018

Mitigate Bias (Method 1)

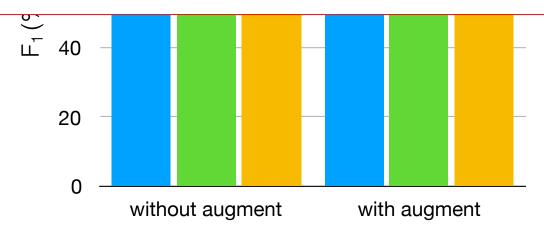
- Data Augmentation
 - Generate gender swapped training variants
 - Re-train on the union dataset
 - Almost mitigate all the bias shown in WinoBias



Mitigate Bias (Method 1)

- Data Augmentation
 - Generate gender swapped training variants
 - Re-train on the union dataset
 - Almost mitigate all the bias shown in WinoBias

Data augmentation is effective. What if we don't want to retrain?



Mitigate Bias (Method 2)

- Neutralize ELMo Embeddings
 - Average the ELMo embeddings for test dataset

The driver stopped the car at the hospital because she was paid to do so

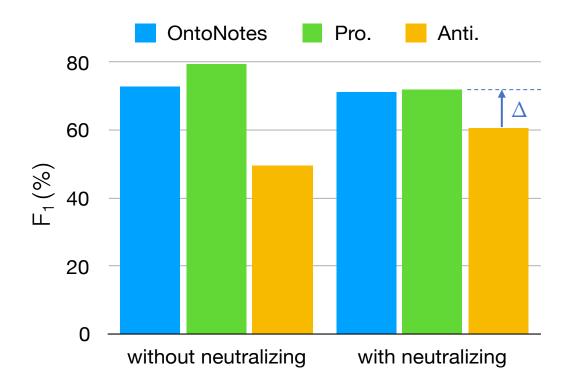
gender swapping

The driver stopped the car at the hospital because he was paid to do so-

average

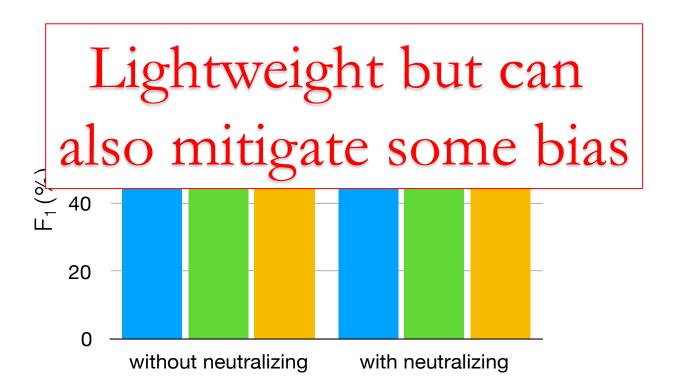
Mitigate Bias (Method 2)

- Neutralize ELMo Embeddings
 - Lightweight; keeps the performance
 - Mitigate some of the bias



Mitigate Bias (Method 2)

- Neutralize ELMo Embeddings
 - Lightweight; keeps the performance
 - Mitigate some of the bias



Conclusion

- ELMo is sensitive to gender
 - Training corpus is biased to man
 - ELMo treats genders unequally
 - Bias propagates to downstream tasks
- Mitigation Bias
 - Data augmentation
 - Neutralizing ELMo

Thank you!