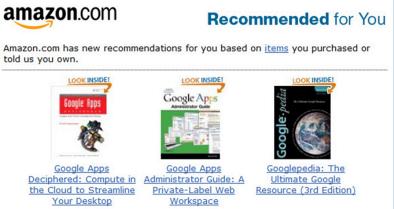


Detecting and Mitigating Bias in NLP

Jieyu Zhao

https://jyzhao.net

NLP models are prevalent



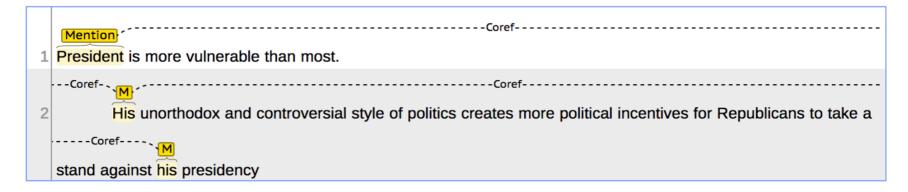
Bias in Visual Semantic Role Labeling (vSRL)

Cooking		
Role	Noun	
agent		
food	vegetable	
container	bowl	
tool	knife	
place	kitchen	

• Jieyu Zhao, et al. "Men also like shopping: Reducing gender bias amplification using corpus-level constraints." EMNLP (2017). Best Long Paper Award

Bias in Coreference Resolution

- Coreference resolution is biased^{1,2}
 - Model fails for female when given same context

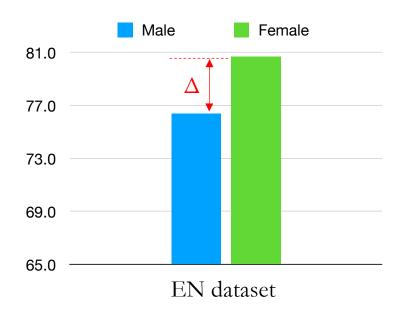


Change his \rightarrow her?

²Rudinger et al. Gender Bias in Coreference Resolution. NAACL 2018

Bias in Transfer Learning: Bio Prediction

- Edmund J. Bourne, PhD, is a psychologist in northern California, ... He is author of several books, ...
- Dr. Constance Milbrath is a developmental psychologist, ... Her interests at HELP are in the ethno-cultural determinants ...





4

Bias in NLP

Mitigating Gender Bias in Natural Language Processing: Literature Review

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding, Kai-Wei Chang, William Yang Wang

Language (Technology) is Power: A Critical Survey of "Bias" in NLP

Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach

- R. Rudinger et al. Social Bias in Elicited Natural Language Inferences. ENLP 2017
- L. Dixon et al. Measuring and Mitigating Unintended Bias in Text Classification. AAAI 2017
- S. Kiritchenko et al. Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems. SEM 2018
- J. Park et al. Reducing Gender Bias in Abusive Language Detection. EMNLP 2018
- N. Schluter. The Glass Ceiling in NLP. EMNLP 2018
- K. Webster et al. Mind the GAP: A balanced corpus of gendered ambiguous pronouns. TACL 2018
- G. Stanovsky et al. Evaluating Gender Bias in Machine Translation. ACL 2019
- T. Manzini et al. Black is to Criminal as Caucasian is to Police: Detecting and Removing Multi-class Bias in Word Embedding. NAACL 2019
- E. Sheng, et al. The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019
- M. De-Arteage et al. Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting. FAT 2019
- K. Chang et al. Tutorial: Bias and Fairness in Natural Language Processing. EMNLP 2019

• ...

Outline

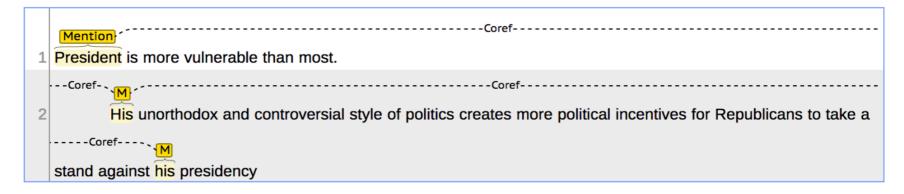
Bias in NLP Modules

Bias in Language Representations

Bias Amplification

Bias in NLP: Coreference Resolution

- Coreference resolution is biased^{1,2}
 - Model fails for female when given same context



1	President is more vulnerable than most.
	Coref
	M,
2	Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand
ŀ	Coref- `M
	against <mark>her</mark> presidency

¹Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018

²Rudinger et al. Gender Bias in Coreference Resolution. NAACL 2018

Evaluate Bias

- WinoBias dataset¹
 - Pro-Stereotypical (Pro.) and Anti-Stereotypical (Anti.)

```
The physician hired the secretary because he was overwhelmed with clients.

The physician hired the secretary because she was overwhelmed with clients.
```

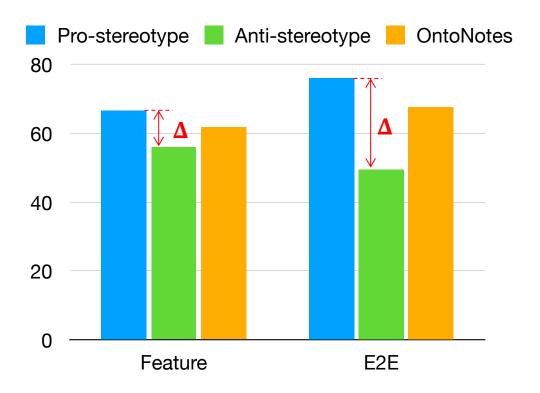
```
The secretary called the physician and told him about a new patient.

The secretary called the physician and told her about a new patient.
```

• Bias: performance difference between Pro. and Anti. dataset.

Bias in Coreference Resolution

• Bias exists in different coreference systems



Source of Bias

Training Dataset Bias

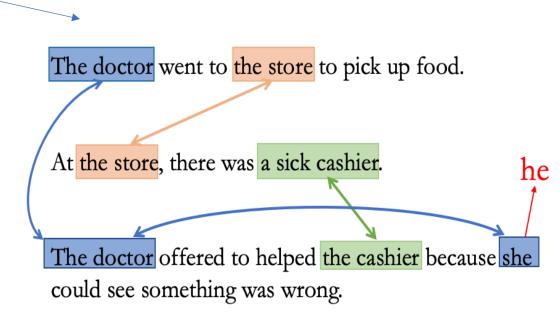
- I. 80% of entities headed by gendered pronouns are male.
- II. Male gendered mentions are more likely to contain a job.

Resource Bias

- I. Word embeddings¹: "man" is closer to "programmer" than "woman".
- II. Gender lists: corpus-based gender statistics

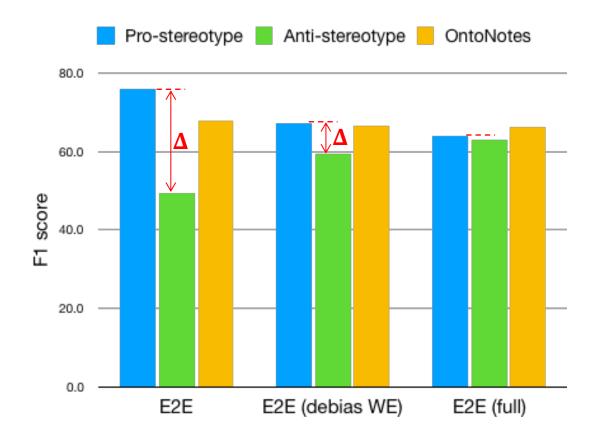
Gender Swapping

- I. Build a dictionary of gendered terms
- II. An additional training corpus where all male entities are swapped for female entities and vice-versa (*Aug.*)
- Modify the resource
- I. Debiased word embeddings or balanced gender list

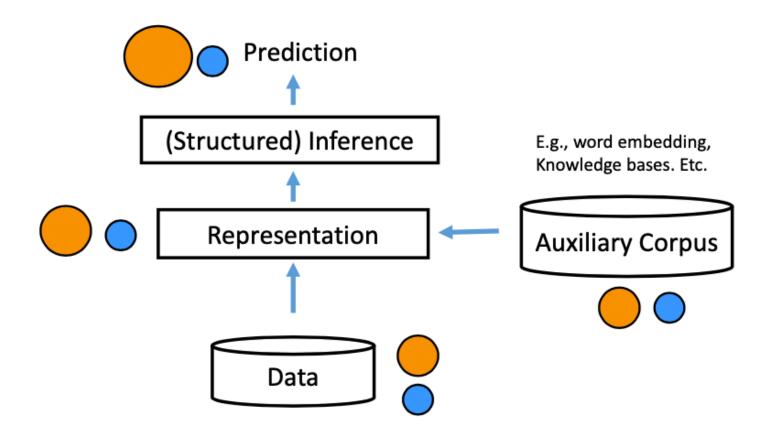


Bias Mitigation

- Data Augmentation
- Using Debiased Word Embeddings



A Carton of NLP Pipeline



credit: Kai-Wei Chang

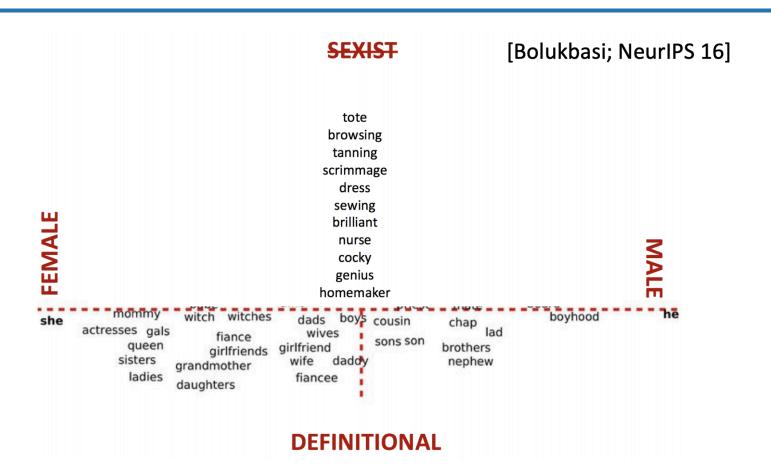
Outline

Bias in NLP Modules

Bias in Language Representations

Bias Amplification

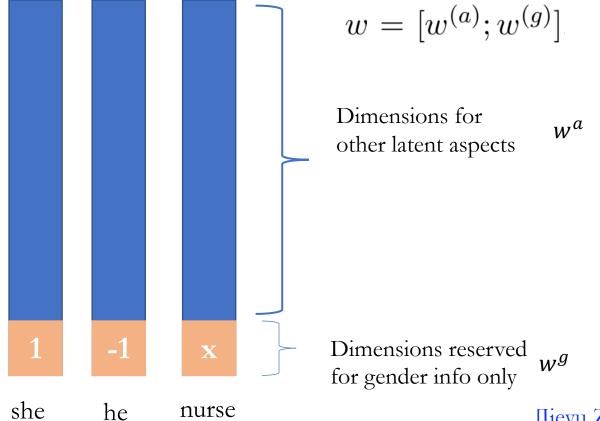
Bias in Word Embeddings



This can be done by projecting gender direction out from gender neutral words using linear operations.

Learning Gender-Neutral Word Embeddings

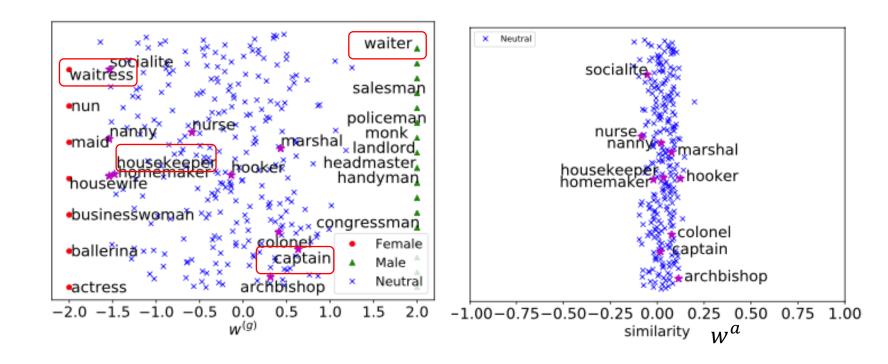
- Goal: To learn an embeddings "without" gender information encoded
- GN-GloVe: To retain gender info in certain dimensions



16

Learning Gender-Neutral Word Embeddings

GN-GloVe separates the gender info with other aspects



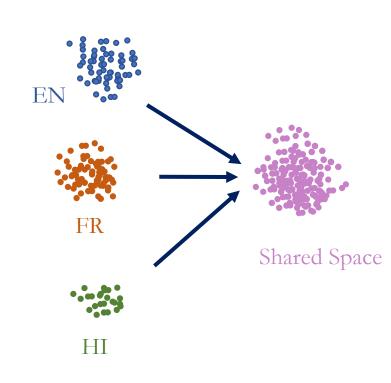
H. Gonen, et al. Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them. NAACL (2019)

 w^{a}

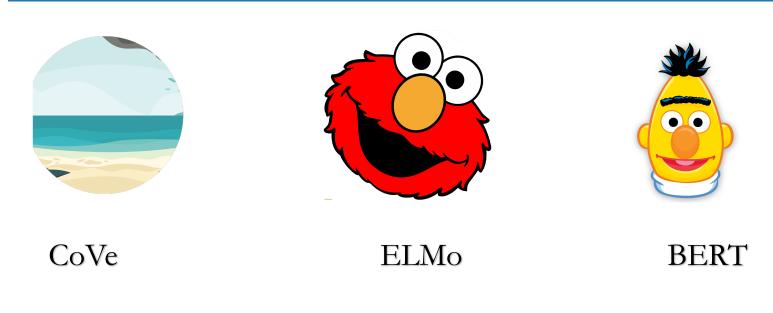
 \mathbf{w}^{g}

Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer Learning

- Goal: To understand bias in multilingual word embeddings
- Resources: New datasets for intrinsic and extrinsic bias analysis
- Key Takeaways:
 - Bias commonly exists in different languages
 - Different alignment targets affect the bias
 - Existing mitigation method helps but cannot completely remove the bias.



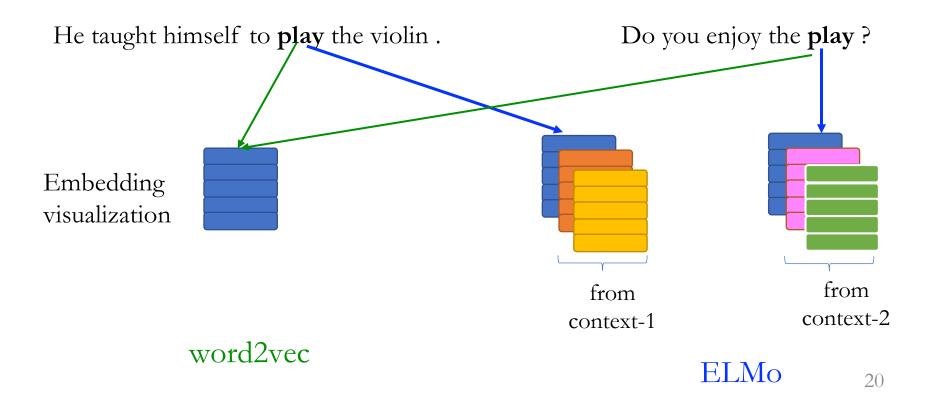
Gender Bias in Contextualized Embeddings



Great performaine improvement!

Background: ELMo

- Make use of a pretrained language model
- Embed corresponding context into the representations

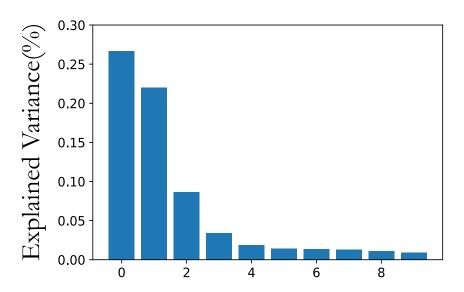


Gender Geometry in ELMo

• First two components explain more variance than others

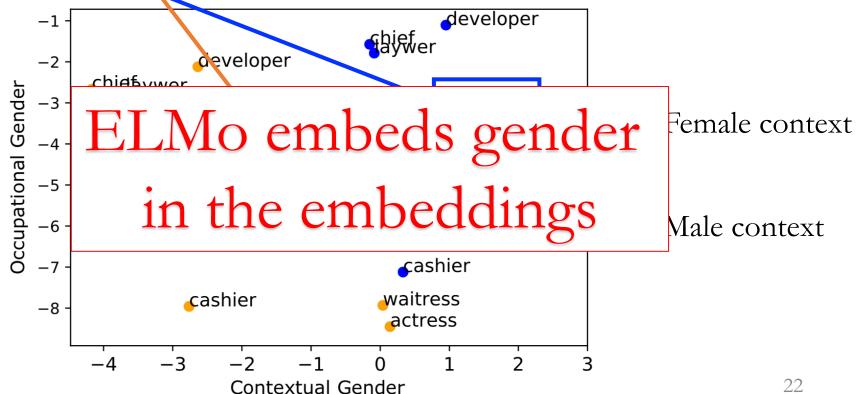
(Feminine) The driver stopped the car at the hospital because **she** was paid to do so (Masculine) The driver stopped the car at the hospital because **he** was paid to do so

gender direction: ELMo(driver) – ELMo(driver)



Gender Geometry in ELMo

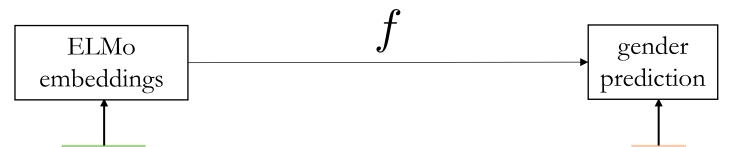
- The driver stopped the car at the hospital because she was paid to do so
- The driver stopped the car at the hospital because he was paid to do so



Unequal Treatment of Gender

• Classifier

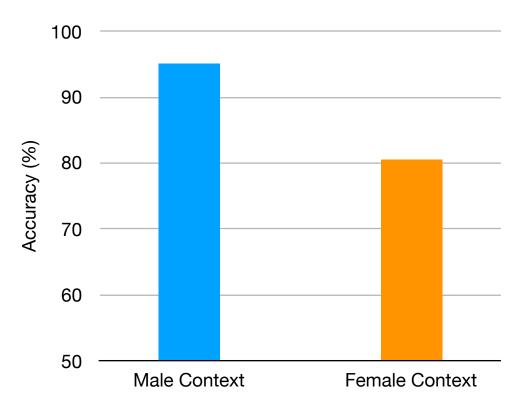
$$f:$$
 ELMo(occupation) o context gender



The driver stopped the car at the hospital because she was paid to do so

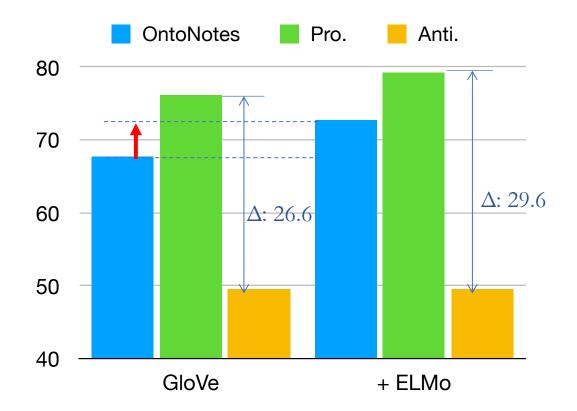
Unequal Treatment of Gender (continued)

- ELMo propagates gender information from the context
- Male information is 14% more accurately propagated than female



Bias in Coreference Resolution

- ELMo boosts the performance
- However, enlarge the bias (Δ)



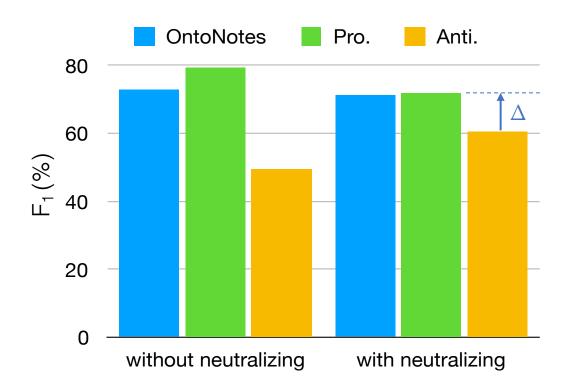
- Neutralize ELMo Embeddings
 - Average the ELMo embeddings for test dataset

The driver stopped the car at the hospital because she was paid to do so

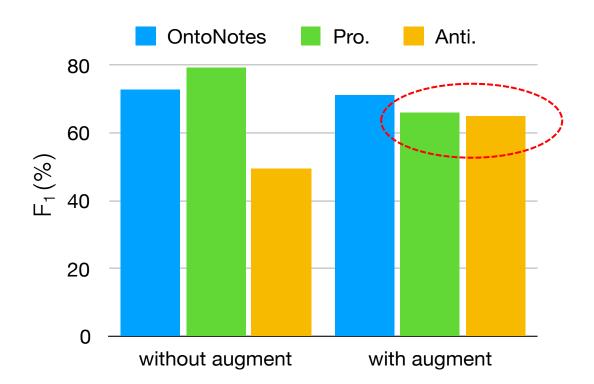
gender swapping

The driver stopped the car at the hospital because he was paid to do so-

- Neutralize ELMo Embeddings
 - Lightweight; keeps the performance
 - Mitigate some of the bias (in WinoBias)



- Data Augmentation
 - Retrain the model
 - Mitigate almost all the biases (in WinoBias)



Outline

Bias in NLP Modules

Bias in Language Representations

Bias Amplification

What's the agent for this image?

Cooking		
Role	Noun	
agent		
food	vegetable	
container	bowl	
tool	knife	
place	kitchen	

• Jieyu Zhao, et al. "Men also like shopping: Reducing gender bias amplification using corpus-level constraints." EMNLP (2017). Best Long Paper Award

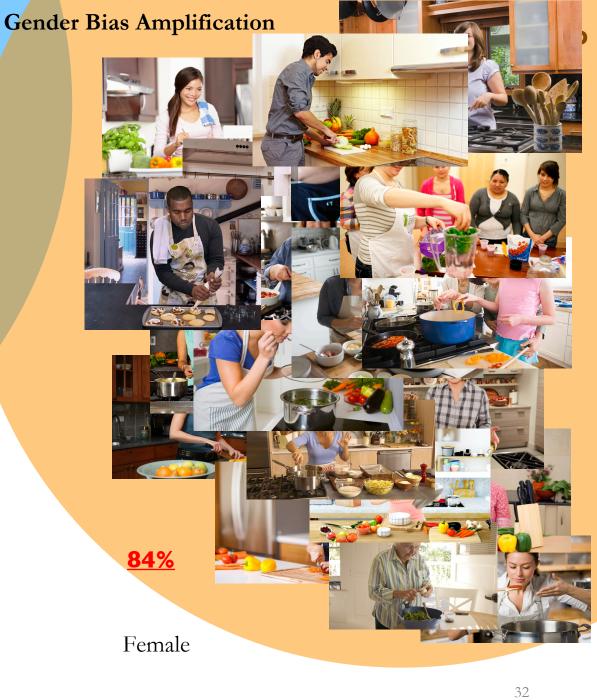
<u>33%</u>

Male

credit to: Mark Yatskar

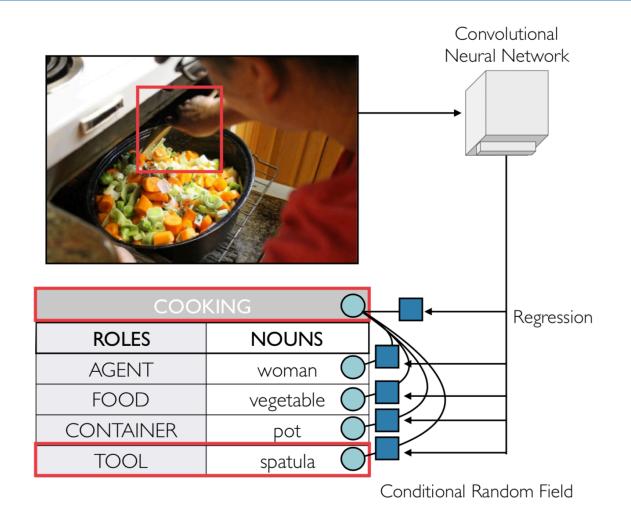
<u>16%</u>

Male

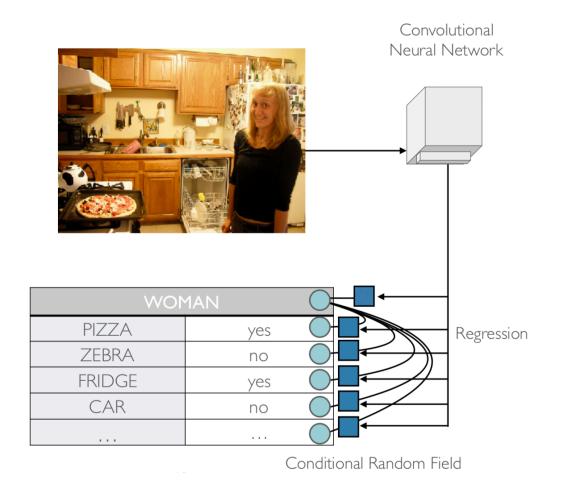


imsitu.org

imSitu: visual Semantic Role Labeling (Activity/Verb)



MLC: COCO Multi-Label Classification (Object/Noun)

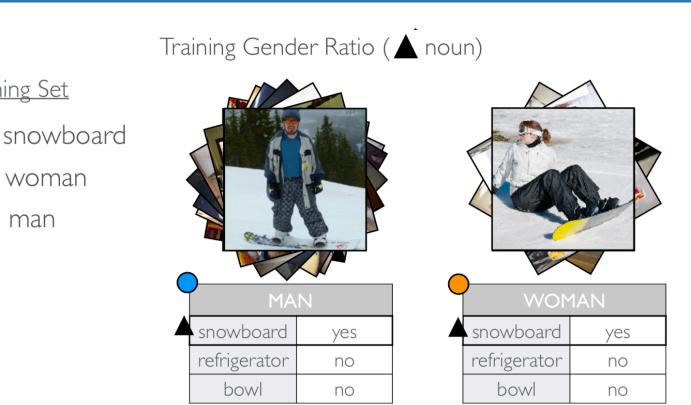


Visualize and Quantify the Bias

Training Set

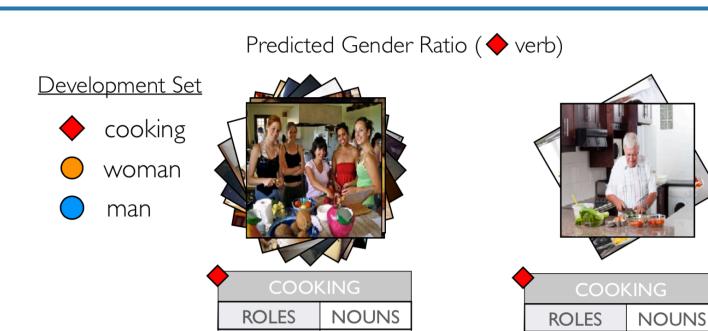
woman

man



 $\#(\triangle snowboard, \bigcirc man)$ $\#(\Delta \text{snowboard}, \bigcirc \text{man}) + \#(\Delta \text{snowboard}, \bigcirc \text{woman}) = 2/3$

Model Bias Amplification

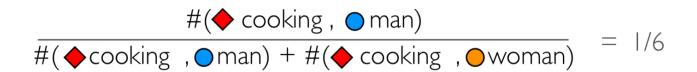


woman

stir-fry

AGENT

FOOD



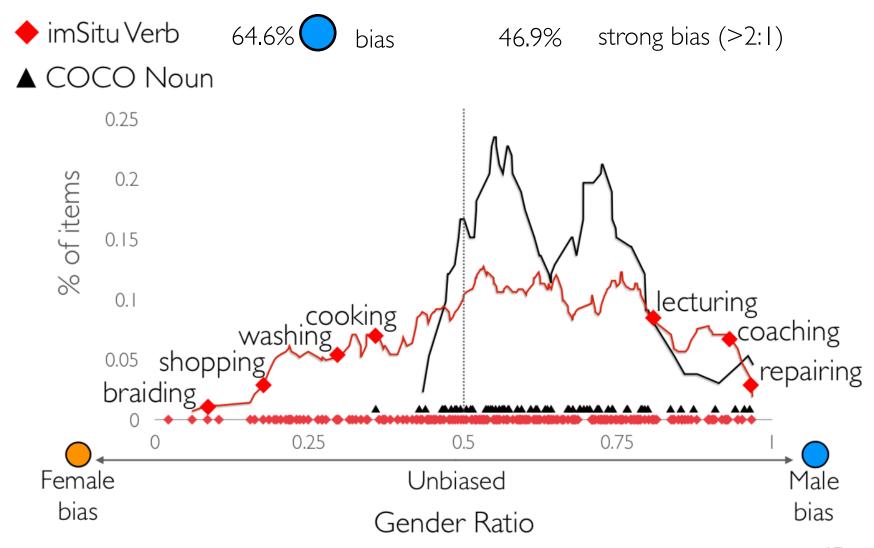
AGENT

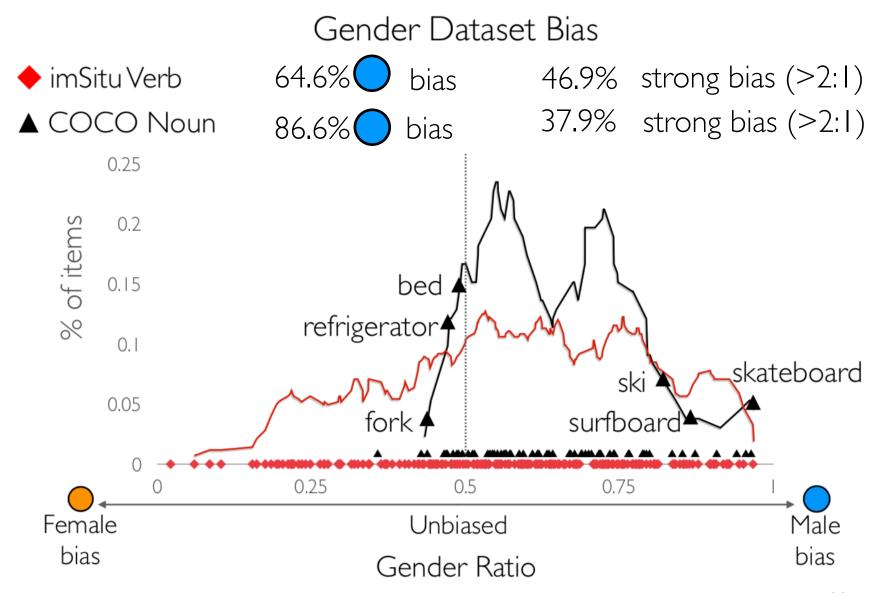
FOOD

man

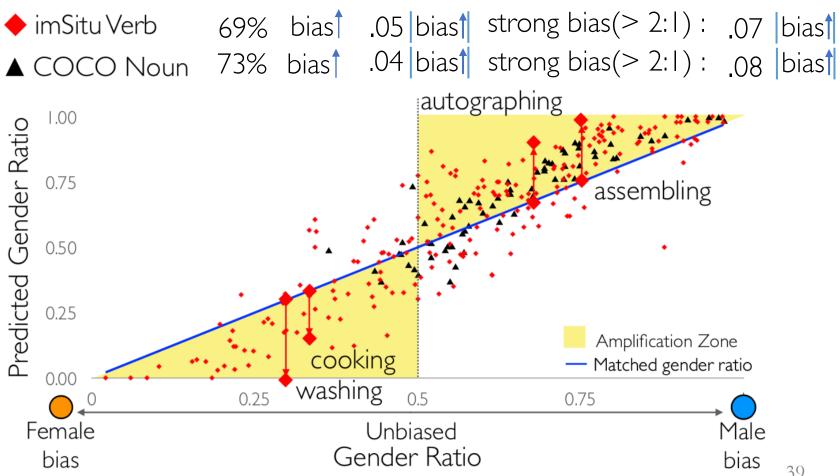
noodle

Gender Dataset Bias

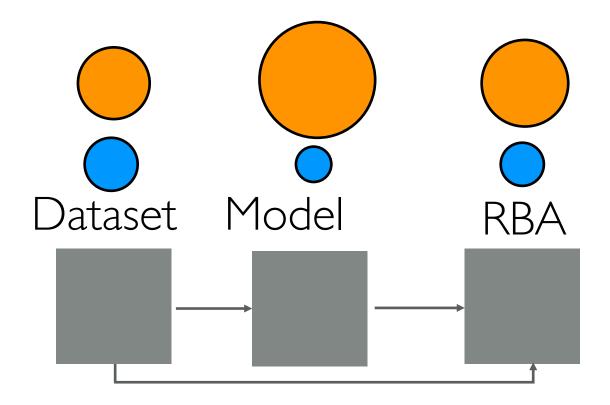




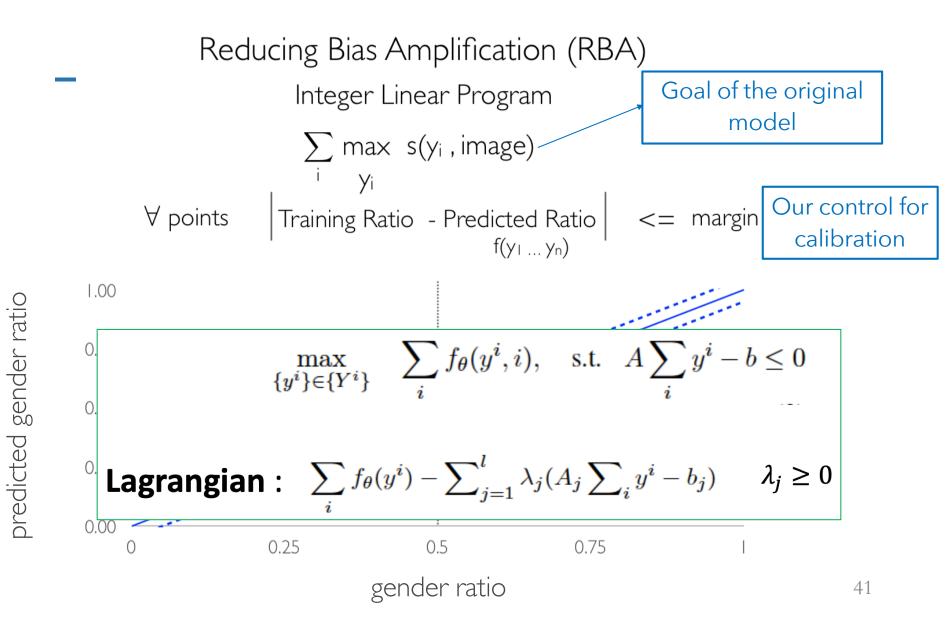
Model Bias Amplification



Reducing Bias Amplification (RBA)

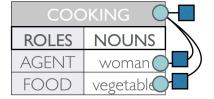


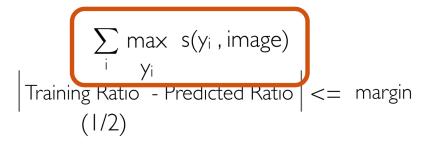
Make the model avoid making biased decisions



Lagrangian Relaxation

COC	KING 🔾	
ROLES	NOUNS	
AGENT	woman	₽)
FOOD	pancake	





• Lagrange Multiplier (λ) Per Constraint

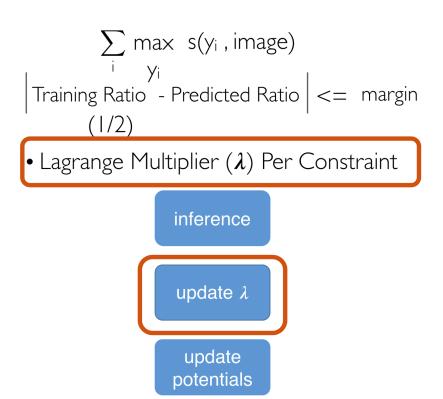
inference

update λ

update potentials

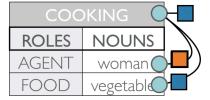
Lagrangian Relaxation

COOKING (H
ROLES	NOUNS	
AGENT	woman 🔵	
FOOD	pancake C	



Lagrangian Relaxation

COC		
ROLES	NOUNS	
AGENT	woman	-
FOOD	pancake	



$$\sum_{i} \max_{y_i} s(y_i, image)$$

$$\left| \text{Training Ratio - Predicted Ratio} \right| <= \text{ margin}$$

$$(1/2)$$

• Lagrange Multiplier (λ) Per Constraint

inference

 $\text{update } \lambda$

update potentials

Lagrangian Relaxation

COC		
ROLES	NOUNS	
AGENT	woman 🔵	
FOOD	pancake C	

$$\sum_{i} \max_{y_i} s(y_i, image)$$

$$\left| \text{Training Ratio - Predicted Ratio} \right| <= \text{ margin}$$

$$(1/2)$$

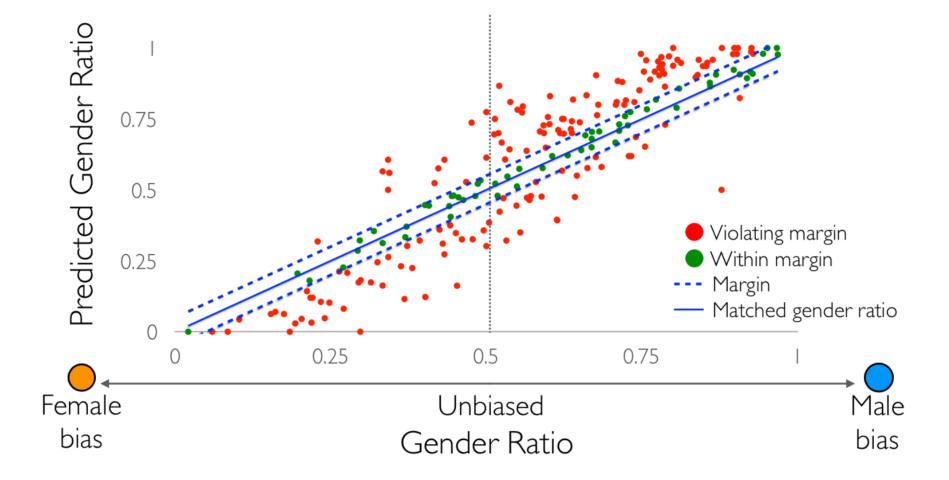
• Lagrange Multiplier (λ) Per Constraint

update λ

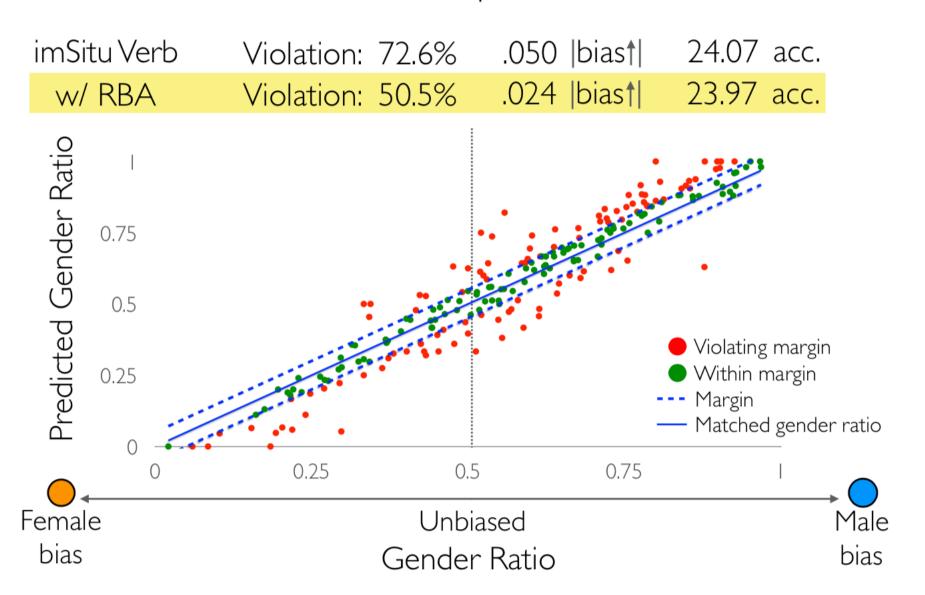
update potentials

Gender Bias De-amplification in imSitu

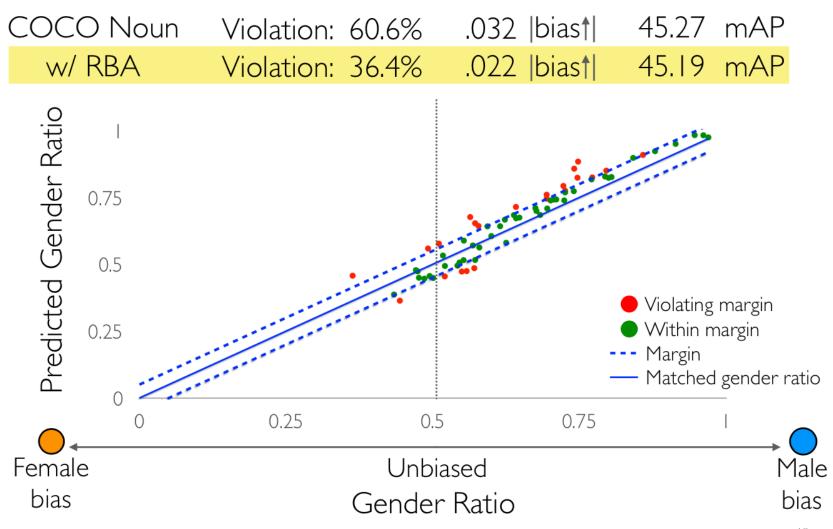
imSitu Verb Violation: 72.6% .050 |biast 24.07 acc.



Gender Bias De-amplification in imSitu



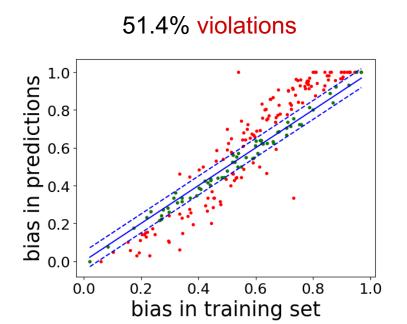
Gender Bias De-amplification in COCO



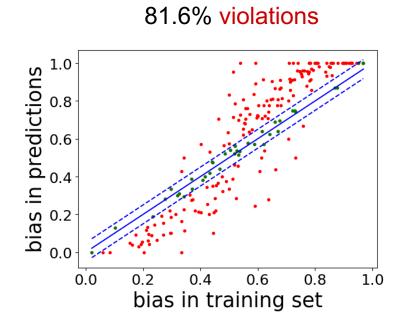
Mitigating Gender Bias Amplification in Distribution by Posterior Regularization¹

- Top Prediction vs. Distribution Prediction
 - Top prediction (Zhao et. al. 17):
 - Model is forced to make one decision
 - Even similar probabilities for "female" and "male" predictions
 - Potentially amplify the bias
 - Distribution of predictions
 - A better view of understanding bias amplification
 - Model is trained using regularized maximum likelihood objective

Bias Amplification in Distribution



Posterior Distribution



Top prediction (EMNLP'17)

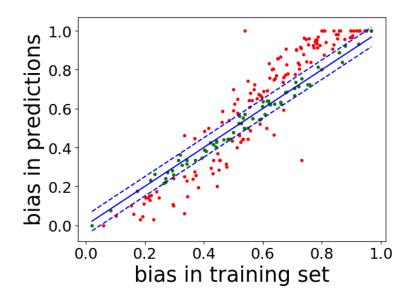
Bias Mitigation Using Posterior Regularization

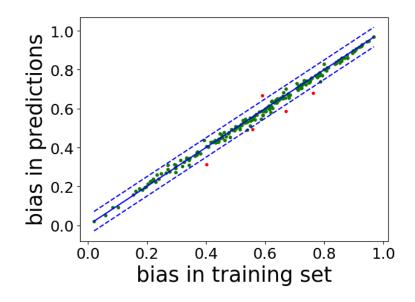
vSRL Violation: 51.4% w/ PR Violation: 2%

Amplification: 0.032 Amplification: -0.005

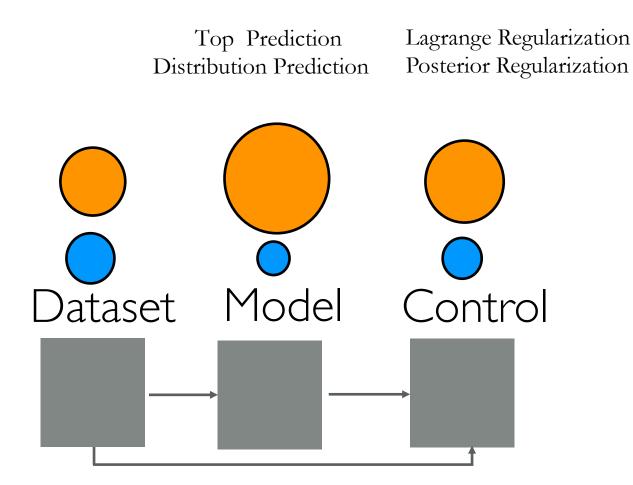
Acc.: 23.2%

Acc.: 23.1%





Bias Amplification



Conclusion

- * Biases are embedded in NLP models
- Controlling Biases is still an open problem

Our Group Page:

http://web.cs.ucla.edu/~kwchang/members/

